假设不为空时对移出的假设进行收集(不可直接引用)
theorem _hyp_collect (A G_1 G_2 G_3: wff): $ G_1 \imp G_2 \imp G_3 \imp A $ > $ G_1 \imp G_2 \and G_3 \imp A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | (G_1 \imp G_2 \imp G_3 \imp A) \imp ((G_2 \imp G_3 \imp A) \imp G_2 \and G_3 \imp A) \imp G_1 \imp G_2 \and G_3 \imp A |
|
| 2 | hyp h | G_1 \imp G_2 \imp G_3 \imp A |
|
| 3 | 1, 2 | ax_mp | ((G_2 \imp G_3 \imp A) \imp G_2 \and G_3 \imp A) \imp G_1 \imp G_2 \and G_3 \imp A |
| 4 | imp_nested_assemb_and | (G_2 \imp G_3 \imp A) \imp G_2 \and G_3 \imp A |
|
| 5 | 3, 4 | ax_mp | G_1 \imp G_2 \and G_3 \imp A |