Theorem _hyp_fomp | index | src |

fomp的假设无关形式(不可引用)

theorem _hyp_fomp {x: set} (G A B: wff x):
  $ \nf x G $ >
  $ G \imp \fo x A \imp B $ >
  $ G \imp A $ >
  $ G \imp B $;
StepHypRefExpression
1 hyp h1
G \imp \fo x A \imp B
2 hyp g
\nf x G
3 hyp h2
G \imp A
4 2, 3 _hyp_intro_fo
G \imp \fo x A
5 1, 4 _hyp_mp
G \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)