\nf闭包\neg(不可引用)
theorem _nf_clos_neg {x: set} (A: wff x): $ \nf x A $ > $ \nf x \neg A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_eliml | (\nf x A \iff \nf x \neg A) \imp \nf x A \imp \nf x \neg A |
|
| 2 | iff_tran | (\nf x A \iff \neg \fo x A \imp \fo x \neg A) \imp (\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A) \imp (\nf x A \iff \ex x \neg A \imp \fo x \neg A) |
|
| 3 | neg_imp_perm | \neg \fo x \neg A \imp \fo x A \iff \neg \fo x A \imp \fo x \neg A |
|
| 4 | 3 | conv ex | \ex x A \imp \fo x A \iff \neg \fo x A \imp \fo x \neg A |
| 5 | 4 | conv nf | \nf x A \iff \neg \fo x A \imp \fo x \neg A |
| 6 | 2, 5 | ax_mp | (\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A) \imp (\nf x A \iff \ex x \neg A \imp \fo x \neg A) |
| 7 | iff_intror_imp | (\neg \fo x A \iff \ex x \neg A) \imp (\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A) |
|
| 8 | iff_symm | (\ex x \neg A \iff \neg \fo x A) \imp (\neg \fo x A \iff \ex x \neg A) |
|
| 9 | exneg_eqv_negfo | \ex x \neg A \iff \neg \fo x A |
|
| 10 | 8, 9 | ax_mp | \neg \fo x A \iff \ex x \neg A |
| 11 | 7, 10 | ax_mp | \neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A |
| 12 | 6, 11 | ax_mp | \nf x A \iff \ex x \neg A \imp \fo x \neg A |
| 13 | 12 | conv nf | \nf x A \iff \nf x \neg A |
| 14 | 1, 13 | ax_mp | \nf x A \imp \nf x \neg A |
| 15 | hyp h | \nf x A |
|
| 16 | 14, 15 | ax_mp | \nf x \neg A |