Theorem _nf_clos_neg | index | src |

\nf闭包\neg(不可引用)

theorem _nf_clos_neg {x: set} (A: wff x): $ \nf x A $ > $ \nf x \neg A $;
StepHypRefExpression
1 iff_eliml
(\nf x A \iff \nf x \neg A) \imp \nf x A \imp \nf x \neg A
2 iff_tran
(\nf x A \iff \neg \fo x A \imp \fo x \neg A) \imp
  (\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A) \imp
  (\nf x A \iff \ex x \neg A \imp \fo x \neg A)
3 neg_imp_perm
\neg \fo x \neg A \imp \fo x A \iff \neg \fo x A \imp \fo x \neg A
4 3 conv ex
\ex x A \imp \fo x A \iff \neg \fo x A \imp \fo x \neg A
5 4 conv nf
\nf x A \iff \neg \fo x A \imp \fo x \neg A
6 2, 5 ax_mp
(\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A) \imp (\nf x A \iff \ex x \neg A \imp \fo x \neg A)
7 iff_intror_imp
(\neg \fo x A \iff \ex x \neg A) \imp (\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A)
8 iff_symm
(\ex x \neg A \iff \neg \fo x A) \imp (\neg \fo x A \iff \ex x \neg A)
9 exneg_eqv_negfo
\ex x \neg A \iff \neg \fo x A
10 8, 9 ax_mp
\neg \fo x A \iff \ex x \neg A
11 7, 10 ax_mp
\neg \fo x A \imp \fo x \neg A \iff \ex x \neg A \imp \fo x \neg A
12 6, 11 ax_mp
\nf x A \iff \ex x \neg A \imp \fo x \neg A
13 12 conv nf
\nf x A \iff \nf x \neg A
14 1, 13 ax_mp
\nf x A \imp \nf x \neg A
15 hyp h
\nf x A
16 14, 15 ax_mp
\nf x \neg A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4)