Theorem and_def | index | src |

\and定义式

theorem and_def (A B: wff): $ A \and B \iff \neg (A \imp \neg B) $;
StepHypRefExpression
1 iff_refl
\neg (A \imp \neg B) \iff \neg (A \imp \neg B)
2 1 conv and
A \and B \iff \neg (A \imp \neg B)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)