前件\and拆解嵌套\imp
theorem and_imp_break_nested (A B C: wff): $ (A \and B \imp C) \imp A \imp B \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | ((\neg (A \imp \neg B) \imp C) \imp A \imp \neg C \imp \neg B) \imp ((A \imp \neg C \imp \neg B) \imp A \imp B \imp C) \imp (\neg (A \imp \neg B) \imp C) \imp A \imp B \imp C |
|
| 2 | imp_tran | ((\neg (A \imp \neg B) \imp C) \imp \neg C \imp A \imp \neg B) \imp ((\neg C \imp A \imp \neg B) \imp A \imp \neg C \imp \neg B) \imp (\neg (A \imp \neg B) \imp C) \imp A \imp \neg C \imp \neg B |
|
| 3 | neg_imp_swap | (\neg (A \imp \neg B) \imp C) \imp \neg C \imp A \imp \neg B |
|
| 4 | 2, 3 | ax_mp | ((\neg C \imp A \imp \neg B) \imp A \imp \neg C \imp \neg B) \imp (\neg (A \imp \neg B) \imp C) \imp A \imp \neg C \imp \neg B |
| 5 | imp_imp_swapl | (\neg C \imp A \imp \neg B) \imp A \imp \neg C \imp \neg B |
|
| 6 | 4, 5 | ax_mp | (\neg (A \imp \neg B) \imp C) \imp A \imp \neg C \imp \neg B |
| 7 | 1, 6 | ax_mp | ((A \imp \neg C \imp \neg B) \imp A \imp B \imp C) \imp (\neg (A \imp \neg B) \imp C) \imp A \imp B \imp C |
| 8 | imp_introl_imp | ((\neg C \imp \neg B) \imp B \imp C) \imp (A \imp \neg C \imp \neg B) \imp A \imp B \imp C |
|
| 9 | neg_imp_elimrev | (\neg C \imp \neg B) \imp B \imp C |
|
| 10 | 8, 9 | ax_mp | (A \imp \neg C \imp \neg B) \imp A \imp B \imp C |
| 11 | 7, 10 | ax_mp | (\neg (A \imp \neg B) \imp C) \imp A \imp B \imp C |
| 12 | 11 | conv and | (A \and B \imp C) \imp A \imp B \imp C |