集合等号左替换性
theorem eqs_repl (x y z: set): $ x = y \imp (x = z \iff y = z) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (x = z \imp y = z) \imp (y = z \imp x = z) \imp (x = z \iff y = z) |
|
| 2 | 1 | _hyp_null_complete | x = y \imp (x = z \imp y = z) \imp (y = z \imp x = z) \imp (x = z \iff y = z) |
| 3 | equality | x = y \imp x = z \imp y = z |
|
| 4 | 3 | _hyp_null_complete | x = y \imp x = y \imp x = z \imp y = z |
| 5 | _hyp_null_intro | x = y \imp x = y |
|
| 6 | 4, 5 | _hyp_mp | x = y \imp x = z \imp y = z |
| 7 | 2, 6 | _hyp_mp | x = y \imp (y = z \imp x = z) \imp (x = z \iff y = z) |
| 8 | eqs_tran | x = y \imp y = z \imp x = z |
|
| 9 | 8 | _hyp_null_complete | x = y \imp x = y \imp y = z \imp x = z |
| 10 | 9, 5 | _hyp_mp | x = y \imp y = z \imp x = z |
| 11 | 7, 10 | _hyp_mp | x = y \imp (x = z \iff y = z) |