Theorem eqs_repl | index | src |

集合等号左替换性

theorem eqs_repl (x y z: set): $ x = y \imp (x = z \iff y = z) $;
StepHypRefExpression
1 iff_comp
(x = z \imp y = z) \imp (y = z \imp x = z) \imp (x = z \iff y = z)
2 1 _hyp_null_complete
x = y \imp (x = z \imp y = z) \imp (y = z \imp x = z) \imp (x = z \iff y = z)
3 equality
x = y \imp x = z \imp y = z
4 3 _hyp_null_complete
x = y \imp x = y \imp x = z \imp y = z
5 _hyp_null_intro
x = y \imp x = y
6 4, 5 _hyp_mp
x = y \imp x = z \imp y = z
7 2, 6 _hyp_mp
x = y \imp (y = z \imp x = z) \imp (x = z \iff y = z)
8 eqs_tran
x = y \imp y = z \imp x = z
9 8 _hyp_null_complete
x = y \imp x = y \imp y = z \imp x = z
10 9, 5 _hyp_mp
x = y \imp y = z \imp x = z
11 7, 10 _hyp_mp
x = y \imp (x = z \iff y = z)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7)