集合等号对称性
theorem eqs_sym (x y: set): $ x = y \imp y = x $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_imp_elimrsl | (x = y \imp x = x \imp y = x) \imp x = x \imp x = y \imp y = x |
|
| 2 | equality | x = y \imp x = x \imp y = x |
|
| 3 | 1, 2 | ax_mp | x = x \imp x = y \imp y = x |
| 4 | eqs_refl | x = x |
|
| 5 | 3, 4 | ax_mp | x = y \imp y = x |