Theorem eqs_sym | index | src |

集合等号对称性

theorem eqs_sym (x y: set): $ x = y \imp y = x $;
StepHypRefExpression
1 imp_imp_elimrsl
(x = y \imp x = x \imp y = x) \imp x = x \imp x = y \imp y = x
2 equality
x = y \imp x = x \imp y = x
3 1, 2 ax_mp
x = x \imp x = y \imp y = x
4 eqs_refl
x = x
5 3, 4 ax_mp
x = y \imp y = x

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7)