Theorem ex_eqv_negfoneg | index | src |

\ex等价\neg\fo\neg

theorem ex_eqv_negfoneg {x: set} (A: wff x): $ \ex x A \iff \neg \fo x \neg A $;
StepHypRefExpression
1 iff_refl
\ex x A \iff \ex x A
2 1 conv ex
\ex x A \iff \neg \fo x \neg A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)