\fo指配(可证)
theorem fo_alloc_prov {x: set} (A: wff x): $ A $ > $ A \iff \fo x A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (A \imp \fo x A) \imp (\fo x A \imp A) \imp (A \iff \fo x A) |
|
| 2 | introl_imp | \fo x A \imp A \imp \fo x A |
|
| 3 | hyp h | A |
|
| 4 | 3 | intro_fo | \fo x A |
| 5 | 2, 4 | ax_mp | A \imp \fo x A |
| 6 | 1, 5 | ax_mp | (\fo x A \imp A) \imp (A \iff \fo x A) |
| 7 | fo_elim | \fo x A \imp A |
|
| 8 | 6, 7 | ax_mp | A \iff \fo x A |