Theorem fo_alloc_prov | index | src |

\fo指配(可证)

theorem fo_alloc_prov {x: set} (A: wff x): $ A $ > $ A \iff \fo x A $;
StepHypRefExpression
1 iff_comp
(A \imp \fo x A) \imp (\fo x A \imp A) \imp (A \iff \fo x A)
2 introl_imp
\fo x A \imp A \imp \fo x A
3 hyp h
A
4 3 intro_fo
\fo x A
5 2, 4 ax_mp
A \imp \fo x A
6 1, 5 ax_mp
(\fo x A \imp A) \imp (A \iff \fo x A)
7 fo_elim
\fo x A \imp A
8 6, 7 ax_mp
A \iff \fo x A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)