\fo\imp插入右侧(左侧不出现)
theorem fo_imp_insrs_absls (A: wff) {x: set} (B: wff x):
$ \fo x (A \imp B) \imp A \imp \fo x B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | (A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B |
|
| 2 | 1 | _hyp_null_complete | \fo x (A \imp B) \imp (A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B |
| 3 | fo_intro_abs | A \imp \fo x A |
|
| 4 | 3 | _hyp_null_complete | \fo x (A \imp B) \imp A \imp \fo x A |
| 5 | 2, 4 | _hyp_mp | \fo x (A \imp B) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B |
| 6 | fo_imp_ins | \fo x (A \imp B) \imp \fo x A \imp \fo x B |
|
| 7 | 6 | _hyp_null_complete | \fo x (A \imp B) \imp \fo x (A \imp B) \imp \fo x A \imp \fo x B |
| 8 | _hyp_null_intro | \fo x (A \imp B) \imp \fo x (A \imp B) |
|
| 9 | 7, 8 | _hyp_mp | \fo x (A \imp B) \imp \fo x A \imp \fo x B |
| 10 | 5, 9 | _hyp_mp | \fo x (A \imp B) \imp A \imp \fo x B |