Theorem fo_imp_insrs_absls | index | src |

\fo\imp插入右侧(左侧不出现)

theorem fo_imp_insrs_absls (A: wff) {x: set} (B: wff x):
  $ \fo x (A \imp B) \imp A \imp \fo x B $;
StepHypRefExpression
1 imp_tran
(A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B
2 1 _hyp_null_complete
\fo x (A \imp B) \imp (A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B
3 fo_intro_abs
A \imp \fo x A
4 3 _hyp_null_complete
\fo x (A \imp B) \imp A \imp \fo x A
5 2, 4 _hyp_mp
\fo x (A \imp B) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B
6 fo_imp_ins
\fo x (A \imp B) \imp \fo x A \imp \fo x B
7 6 _hyp_null_complete
\fo x (A \imp B) \imp \fo x (A \imp B) \imp \fo x A \imp \fo x B
8 _hyp_null_intro
\fo x (A \imp B) \imp \fo x (A \imp B)
9 7, 8 _hyp_mp
\fo x (A \imp B) \imp \fo x A \imp \fo x B
10 5, 9 _hyp_mp
\fo x (A \imp B) \imp A \imp \fo x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_4, ax_5)