Theorem fomp | index | src |

$\fo$ 的MP规则

theorem fomp (B: wff) {x: set} (A: wff x): $ \fo x A \imp B $ > $ A $ > $ B $;
StepHypRefExpression
1 hyp h1
\fo x A \imp B
2 hyp h2
A
3 2 intro_fo
\fo x A
4 1, 3 ax_mp
B

Axiom use

Logic (ax_mp, ax_gen)