Theorem iff_alloc_neg | index | src |

\iff指配\neg

theorem iff_alloc_neg (A B: wff): $ (A \iff B) \iff \neg A \iff \neg B $;
StepHypRefExpression
1 iff_comp
((A \iff B) \imp (\neg A \iff \neg B)) \imp ((\neg A \iff \neg B) \imp (A \iff B)) \imp ((A \iff B) \iff \neg A \iff \neg B)
2 iff_intro_neg
(A \iff B) \imp (\neg A \iff \neg B)
3 1, 2 ax_mp
((\neg A \iff \neg B) \imp (A \iff B)) \imp ((A \iff B) \iff \neg A \iff \neg B)
4 neg_iff_elim
(\neg A \iff \neg B) \imp (A \iff B)
5 3, 4 ax_mp
(A \iff B) \iff \neg A \iff \neg B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)