Theorem imp_allocrev_neg | index | src |

\imp逆指配\neg

theorem imp_allocrev_neg (A B: wff): $ A \imp B \iff \neg B \imp \neg A $;
StepHypRefExpression
1 iff_comp
((A \imp B) \imp \neg B \imp \neg A) \imp ((\neg B \imp \neg A) \imp A \imp B) \imp (A \imp B \iff \neg B \imp \neg A)
2 imp_introrev_neg
(A \imp B) \imp \neg B \imp \neg A
3 1, 2 ax_mp
((\neg B \imp \neg A) \imp A \imp B) \imp (A \imp B \iff \neg B \imp \neg A)
4 neg_imp_elimrev
(\neg B \imp \neg A) \imp A \imp B
5 3, 4 ax_mp
A \imp B \iff \neg B \imp \neg A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)