\imp逆指配\neg
theorem imp_allocrev_neg (A B: wff): $ A \imp B \iff \neg B \imp \neg A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | ((A \imp B) \imp \neg B \imp \neg A) \imp ((\neg B \imp \neg A) \imp A \imp B) \imp (A \imp B \iff \neg B \imp \neg A) |
|
| 2 | imp_introrev_neg | (A \imp B) \imp \neg B \imp \neg A |
|
| 3 | 1, 2 | ax_mp | ((\neg B \imp \neg A) \imp A \imp B) \imp (A \imp B \iff \neg B \imp \neg A) |
| 4 | neg_imp_elimrev | (\neg B \imp \neg A) \imp A \imp B |
|
| 5 | 3, 4 | ax_mp | A \imp B \iff \neg B \imp \neg A |