\imp对\imp左置换
theorem imp_imp_perml (A B C: wff): $ A \imp B \imp C \iff B \imp A \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | ((A \imp B \imp C) \imp B \imp A \imp C) \imp ((B \imp A \imp C) \imp A \imp B \imp C) \imp (A \imp B \imp C \iff B \imp A \imp C) |
|
| 2 | imp_imp_swapl | (A \imp B \imp C) \imp B \imp A \imp C |
|
| 3 | 1, 2 | ax_mp | ((B \imp A \imp C) \imp A \imp B \imp C) \imp (A \imp B \imp C \iff B \imp A \imp C) |
| 4 | imp_imp_swapl | (B \imp A \imp C) \imp A \imp B \imp C |
|
| 5 | 3, 4 | ax_mp | A \imp B \imp C \iff B \imp A \imp C |