Theorem imp_refl | index | src |

同一律

theorem imp_refl (A: wff): $ A \imp A $;
StepHypRefExpression
1 imp_imp_insl
(A \imp (A \imp A) \imp A) \imp (A \imp A \imp A) \imp A \imp A
2 introl_imp
A \imp (A \imp A) \imp A
3 1, 2 ax_mp
(A \imp A \imp A) \imp A \imp A
4 introl_imp
A \imp A \imp A
5 3, 4 ax_mp
A \imp A

Axiom use

Logic (ax_mp, ax_1, ax_2)