Theorem
intror_or
≪
|
index
|
src
|
≫
\or右引入
theorem intror_or (A B: wff): $ A \imp A \or B $;
Step
Hyp
Ref
Expression
1
intror_neg_imp
A \imp \neg A \imp B
2
1
conv
or
A \imp A \or B
Axiom use
Logic
(
ax_mp
,
ax_1
,
ax_2
,
ax_3
)