如果A与x无关,则A与[t/x]A等价。
theorem sb_alloc_nf {x: set} (y: set) (A: wff x):
$ \nf x A $ >
$ A \iff \sb y x A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (A \imp \sb y x A) \imp (\sb y x A \imp A) \imp (A \iff \sb y x A) |
|
| 2 | imp_tran | (A \imp \fo x A) \imp (\fo x A \imp \sb y x A) \imp A \imp \sb y x A |
|
| 3 | hyp n | \nf x A |
|
| 4 | 3 | fo_intro_nf | A \imp \fo x A |
| 5 | 2, 4 | ax_mp | (\fo x A \imp \sb y x A) \imp A \imp \sb y x A |
| 6 | fo_elim_sb | \fo x A \imp \sb y x A |
|
| 7 | 5, 6 | ax_mp | A \imp \sb y x A |
| 8 | 1, 7 | ax_mp | (\sb y x A \imp A) \imp (A \iff \sb y x A) |
| 9 | imp_tran | (\sb y x A \imp \ex x A) \imp (\ex x A \imp A) \imp \sb y x A \imp A |
|
| 10 | sb_to_ex | \sb y x A \imp \ex x A |
|
| 11 | 9, 10 | ax_mp | (\ex x A \imp A) \imp \sb y x A \imp A |
| 12 | 3 | ex_elim_nf | \ex x A \imp A |
| 13 | 11, 12 | ax_mp | \sb y x A \imp A |
| 14 | 8, 13 | ax_mp | A \iff \sb y x A |