Theorem sb_alloc_nf | index | src |

如果A与x无关,则A与[t/x]A等价。

theorem sb_alloc_nf {x: set} (y: set) (A: wff x):
  $ \nf x A $ >
  $ A \iff \sb y x A $;
StepHypRefExpression
1 iff_comp
(A \imp \sb y x A) \imp (\sb y x A \imp A) \imp (A \iff \sb y x A)
2 imp_tran
(A \imp \fo x A) \imp (\fo x A \imp \sb y x A) \imp A \imp \sb y x A
3 hyp n
\nf x A
4 3 fo_intro_nf
A \imp \fo x A
5 2, 4 ax_mp
(\fo x A \imp \sb y x A) \imp A \imp \sb y x A
6 fo_elim_sb
\fo x A \imp \sb y x A
7 5, 6 ax_mp
A \imp \sb y x A
8 1, 7 ax_mp
(\sb y x A \imp A) \imp (A \iff \sb y x A)
9 imp_tran
(\sb y x A \imp \ex x A) \imp (\ex x A \imp A) \imp \sb y x A \imp A
10 sb_to_ex
\sb y x A \imp \ex x A
11 9, 10 ax_mp
(\ex x A \imp A) \imp \sb y x A \imp A
12 3 ex_elim_nf
\ex x A \imp A
13 11, 12 ax_mp
\sb y x A \imp A
14 8, 13 ax_mp
A \iff \sb y x A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)