Theorem _hyp_fo_alloc_prov | index | src |

fo_alloc_prov的假设无关形式(不可引用)

theorem _hyp_fo_alloc_prov {x: set} (G A: wff x):
  $ \nf x G $ >
  $ G \imp A $ >
  $ G \imp (A \iff \fo x A) $;
StepHypRefExpression
1 iff_comp
(A \imp \fo x A) \imp (\fo x A \imp A) \imp (A \iff \fo x A)
2 1 _hyp_null_complete
G \imp (A \imp \fo x A) \imp (\fo x A \imp A) \imp (A \iff \fo x A)
3 introl_imp
\fo x A \imp A \imp \fo x A
4 3 _hyp_null_complete
G \imp \fo x A \imp A \imp \fo x A
5 hyp g
\nf x G
6 hyp h
G \imp A
7 5, 6 _hyp_intro_fo
G \imp \fo x A
8 7 _hyp_null_complete
G \imp G \imp \fo x A
9 _hyp_null_intro
G \imp G
10 8, 9 _hyp_mp
G \imp \fo x A
11 4, 10 _hyp_mp
G \imp A \imp \fo x A
12 2, 11 _hyp_mp
G \imp (\fo x A \imp A) \imp (A \iff \fo x A)
13 fo_elim
\fo x A \imp A
14 13 _hyp_null_complete
G \imp \fo x A \imp A
15 12, 14 _hyp_mp
G \imp (A \iff \fo x A)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)