fo_alloc_prov的假设无关形式(不可引用)
theorem _hyp_fo_alloc_prov {x: set} (G A: wff x):
$ \nf x G $ >
$ G \imp A $ >
$ G \imp (A \iff \fo x A) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (A \imp \fo x A) \imp (\fo x A \imp A) \imp (A \iff \fo x A) |
|
| 2 | 1 | _hyp_null_complete | G \imp (A \imp \fo x A) \imp (\fo x A \imp A) \imp (A \iff \fo x A) |
| 3 | introl_imp | \fo x A \imp A \imp \fo x A |
|
| 4 | 3 | _hyp_null_complete | G \imp \fo x A \imp A \imp \fo x A |
| 5 | hyp g | \nf x G |
|
| 6 | hyp h | G \imp A |
|
| 7 | 5, 6 | _hyp_intro_fo | G \imp \fo x A |
| 8 | 7 | _hyp_null_complete | G \imp G \imp \fo x A |
| 9 | _hyp_null_intro | G \imp G |
|
| 10 | 8, 9 | _hyp_mp | G \imp \fo x A |
| 11 | 4, 10 | _hyp_mp | G \imp A \imp \fo x A |
| 12 | 2, 11 | _hyp_mp | G \imp (\fo x A \imp A) \imp (A \iff \fo x A) |
| 13 | fo_elim | \fo x A \imp A |
|
| 14 | 13 | _hyp_null_complete | G \imp \fo x A \imp A |
| 15 | 12, 14 | _hyp_mp | G \imp (A \iff \fo x A) |