Theorem _hyp_imp_intrors_fo_nfls | index | src |

imp_intrors_fo_nfls的假设和公式无关形式(不可引用)

theorem _hyp_imp_intrors_fo_nfls {x: set} (G A B: wff x):
  $ \nf x G $ >
  $ \nf x A $ >
  $ G \imp A \imp B $ >
  $ G \imp A \imp \fo x B $;
StepHypRefExpression
1 imp_repsecond
(G \imp \fo x A \imp \fo x B) \imp (A \imp \fo x A) \imp G \imp A \imp \fo x B
2 hyp g
\nf x G
3 hyp h
G \imp A \imp B
4 2, 3 _hyp_imp_intro_fo
G \imp \fo x A \imp \fo x B
5 1, 4 ax_mp
(A \imp \fo x A) \imp G \imp A \imp \fo x B
6 hyp n
\nf x A
7 6 fo_intro_nf
A \imp \fo x A
8 5, 7 ax_mp
G \imp A \imp \fo x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)