Theorem _hyp_rm | index | src |

假设移出(不可直接引用)

theorem _hyp_rm (A G_1 G_2: wff):
  $ G_1 \and G_2 \imp A $ >
  $ G_1 \imp G_2 \imp A $;
StepHypRefExpression
1 and_imp_break_nested
(G_1 \and G_2 \imp A) \imp G_1 \imp G_2 \imp A
2 hyp h
G_1 \and G_2 \imp A
3 1, 2 ax_mp
G_1 \imp G_2 \imp A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)