\nf闭包\and(不可引用)
theorem _nf_clos_and {x: set} (A B: wff x):
$ \nf x A $ >
$ \nf x B $ >
$ \nf x (A \and B) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | \nf x A |
|
| 2 | hyp h2 | \nf x B |
|
| 3 | 2 | _nf_clos_neg | \nf x \neg B |
| 4 | 1, 3 | _nf_clos_imp | \nf x (A \imp \neg B) |
| 5 | 4 | _nf_clos_neg | \nf x \neg (A \imp \neg B) |
| 6 | 5 | conv and | \nf x (A \and B) |