Theorem _nf_clos_and | index | src |

\nf闭包\and(不可引用)

theorem _nf_clos_and {x: set} (A B: wff x):
  $ \nf x A $ >
  $ \nf x B $ >
  $ \nf x (A \and B) $;
StepHypRefExpression
1 hyp h1
\nf x A
2 hyp h2
\nf x B
3 2 _nf_clos_neg
\nf x \neg B
4 1, 3 _nf_clos_imp
\nf x (A \imp \neg B)
5 4 _nf_clos_neg
\nf x \neg (A \imp \neg B)
6 5 conv and
\nf x (A \and B)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4)