Theorem _nf_fo_same | index | src |

同变元\nf\fo(不可引用)

theorem _nf_fo_same {x: set} (A: wff x): $ \nf x \fo x A $;
StepHypRefExpression
1 iff_elimr
(\nf x \fo x A \iff \nf x \neg \ex x \neg A) \imp \nf x \neg \ex x \neg A \imp \nf x \fo x A
2 fo_eqv_negexneg
\fo x A \iff \neg \ex x \neg A
3 2 iff_intro_nf
\nf x \fo x A \iff \nf x \neg \ex x \neg A
4 1, 3 ax_mp
\nf x \neg \ex x \neg A \imp \nf x \fo x A
5 _nf_ex_same
\nf x \ex x \neg A
6 5 _nf_clos_neg
\nf x \neg \ex x \neg A
7 4, 6 ax_mp
\nf x \fo x A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_10)