\imp\and右插入\or
theorem and_imp_insr_or (A B C: wff): $ (A \and B \imp C) \imp (A \imp C) \or (B \imp C) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg_elimintror_imp | \neg B \imp B \imp C |
|
| 2 | 1 | _hyp_null_complete | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg B \imp B \imp C |
| 3 | neg_imp_swap | (\neg (A \imp \neg B) \imp C) \imp \neg C \imp A \imp \neg B |
|
| 4 | 3 | _hyp_null_complete | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp (\neg (A \imp \neg B) \imp C) \imp \neg C \imp A \imp \neg B |
| 5 | _hyp_null_intro | (\neg (A \imp \neg B) \imp C) \imp \neg (A \imp \neg B) \imp C |
|
| 6 | 5 | _hyp_complete | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg (A \imp \neg B) \imp C |
| 7 | 4, 6 | _hyp_mp | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg C \imp A \imp \neg B |
| 8 | negimp_splitr_neg | \neg (A \imp C) \imp \neg C |
|
| 9 | 8 | _hyp_null_complete | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg (A \imp C) \imp \neg C |
| 10 | _hyp_intro | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg (A \imp C) |
|
| 11 | 9, 10 | _hyp_mp | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg C |
| 12 | 7, 11 | _hyp_mp | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp A \imp \neg B |
| 13 | negimp_splitl | \neg (A \imp C) \imp A |
|
| 14 | 13 | _hyp_null_complete | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg (A \imp C) \imp A |
| 15 | 14, 10 | _hyp_mp | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp A |
| 16 | 12, 15 | _hyp_mp | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp \neg B |
| 17 | 2, 16 | _hyp_mp | (\neg (A \imp \neg B) \imp C) \and \neg (A \imp C) \imp B \imp C |
| 18 | 17 | _hyp_rm | (\neg (A \imp \neg B) \imp C) \imp \neg (A \imp C) \imp B \imp C |
| 19 | 18 | conv and, or | (A \and B \imp C) \imp (A \imp C) \or (B \imp C) |