Theorem and_splitr | index | src |

\and右拆分

theorem and_splitr (A B: wff): $ A \and B \imp B $;
StepHypRefExpression
1 neg_imp_swap
(\neg B \imp A \imp \neg B) \imp \neg (A \imp \neg B) \imp B
2 introl_imp
\neg B \imp A \imp \neg B
3 1, 2 ax_mp
\neg (A \imp \neg B) \imp B
4 3 conv and
A \and B \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)