Theorem and_splitl | index | src |

\and左拆分

theorem and_splitl (A B: wff): $ A \and B \imp A $;
StepHypRefExpression
1 neg_imp_swap
(\neg A \imp A \imp \neg B) \imp \neg (A \imp \neg B) \imp A
2 neg_elimintror_imp
\neg A \imp A \imp \neg B
3 1, 2 ax_mp
\neg (A \imp \neg B) \imp A
4 3 conv and
A \and B \imp A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)