Theorem and_unify | index | src |

\and归一

theorem and_unify (A: wff): $ A \and A \iff A $;
StepHypRefExpression
1 iff_comp
(\neg (A \imp \neg A) \imp A) \imp (A \imp \neg (A \imp \neg A)) \imp (\neg (A \imp \neg A) \iff A)
2 neg_imp_swap
(\neg A \imp A \imp \neg A) \imp \neg (A \imp \neg A) \imp A
3 introl_imp
\neg A \imp A \imp \neg A
4 2, 3 ax_mp
\neg (A \imp \neg A) \imp A
5 1, 4 ax_mp
(A \imp \neg (A \imp \neg A)) \imp (\neg (A \imp \neg A) \iff A)
6 imp_neg_swap
((A \imp \neg A) \imp \neg A) \imp A \imp \neg (A \imp \neg A)
7 imp_neg_tosame_neg
(A \imp \neg A) \imp \neg A
8 6, 7 ax_mp
A \imp \neg (A \imp \neg A)
9 5, 8 ax_mp
\neg (A \imp \neg A) \iff A
10 9 conv and
A \and A \iff A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)