Theorem or_unify | index | src |

\or归一

theorem or_unify (A: wff): $ A \or A \iff A $;
StepHypRefExpression
1 iff_comp
((\neg A \imp A) \imp A) \imp (A \imp \neg A \imp A) \imp (\neg A \imp A \iff A)
2 neg_imp_tosame
(\neg A \imp A) \imp A
3 1, 2 ax_mp
(A \imp \neg A \imp A) \imp (\neg A \imp A \iff A)
4 introl_imp
A \imp \neg A \imp A
5 3, 4 ax_mp
\neg A \imp A \iff A
6 5 conv or
A \or A \iff A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)