\or归一
theorem or_unify (A: wff): $ A \or A \iff A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | ((\neg A \imp A) \imp A) \imp (A \imp \neg A \imp A) \imp (\neg A \imp A \iff A) |
|
| 2 | neg_imp_tosame | (\neg A \imp A) \imp A |
|
| 3 | 1, 2 | ax_mp | (A \imp \neg A \imp A) \imp (\neg A \imp A \iff A) |
| 4 | introl_imp | A \imp \neg A \imp A |
|
| 5 | 3, 4 | ax_mp | \neg A \imp A \iff A |
| 6 | 5 | conv or | A \or A \iff A |