Theorem assgin_true | index | src |

赋值为真

theorem assgin_true (A: wff): $ A \iff A \iff \true $;
StepHypRefExpression
1 iff_comp
(A \imp (A \iff \true)) \imp ((A \iff \true) \imp A) \imp (A \iff A \iff \true)
2 prov_iff_true
A \imp (A \iff \true)
3 1, 2 ax_mp
((A \iff \true) \imp A) \imp (A \iff A \iff \true)
4 imp_iff_tran_imp
((A \iff \true) \imp \true \imp A) \imp (\true \imp A \iff A) \imp (A \iff \true) \imp A
5 iff_decompbwd
(A \iff \true) \imp \true \imp A
6 4, 5 ax_mp
(\true \imp A \iff A) \imp (A \iff \true) \imp A
7 trueimp_eqv_self
\true \imp A \iff A
8 6, 7 ax_mp
(A \iff \true) \imp A
9 3, 8 ax_mp
A \iff A \iff \true

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)