赋值为真
theorem assgin_true (A: wff): $ A \iff A \iff \true $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (A \imp (A \iff \true)) \imp ((A \iff \true) \imp A) \imp (A \iff A \iff \true) |
|
| 2 | prov_iff_true | A \imp (A \iff \true) |
|
| 3 | 1, 2 | ax_mp | ((A \iff \true) \imp A) \imp (A \iff A \iff \true) |
| 4 | imp_iff_tran_imp | ((A \iff \true) \imp \true \imp A) \imp (\true \imp A \iff A) \imp (A \iff \true) \imp A |
|
| 5 | iff_decompbwd | (A \iff \true) \imp \true \imp A |
|
| 6 | 4, 5 | ax_mp | (\true \imp A \iff A) \imp (A \iff \true) \imp A |
| 7 | trueimp_eqv_self | \true \imp A \iff A |
|
| 8 | 6, 7 | ax_mp | (A \iff \true) \imp A |
| 9 | 3, 8 | ax_mp | A \iff A \iff \true |