赋值为假
theorem assign_false (A: wff): $ \neg A \iff A \iff \false $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (\neg A \imp (A \iff \false)) \imp ((A \iff \false) \imp \neg A) \imp (\neg A \iff A \iff \false) |
|
| 2 | provneg_iff_false | \neg A \imp (A \iff \false) |
|
| 3 | 1, 2 | ax_mp | ((A \iff \false) \imp \neg A) \imp (\neg A \iff A \iff \false) |
| 4 | imp_iff_tran_imp | ((A \iff \false) \imp A \imp \false) \imp (A \imp \false \iff \neg A) \imp (A \iff \false) \imp \neg A |
|
| 5 | iff_decomp | (A \iff \false) \imp A \imp \false |
|
| 6 | 4, 5 | ax_mp | (A \imp \false \iff \neg A) \imp (A \iff \false) \imp \neg A |
| 7 | impfalse_eqv_negself | A \imp \false \iff \neg A |
|
| 8 | 6, 7 | ax_mp | (A \iff \false) \imp \neg A |
| 9 | 3, 8 | ax_mp | \neg A \iff A \iff \false |