Theorem ex_imp_distto_fo_ex | index | src |

\ex\imp分配成\fo\ex

theorem ex_imp_distto_fo_ex {x: set} (A B: wff x):
  $ \ex x (A \imp B) \iff \fo x A \imp \ex x B $;
StepHypRefExpression
1 iff_comp
(\ex x (A \imp B) \imp \fo x A \imp \ex x B) \imp ((\fo x A \imp \ex x B) \imp \ex x (A \imp B)) \imp (\ex x (A \imp B) \iff \fo x A \imp \ex x B)
2 imp_imp_swapl
(\fo x A \imp \ex x (A \imp B) \imp \ex x B) \imp \ex x (A \imp B) \imp \fo x A \imp \ex x B
3 imp_tran
(\fo x A \imp \fo x ((A \imp B) \imp B)) \imp (\fo x ((A \imp B) \imp B) \imp \ex x (A \imp B) \imp \ex x B) \imp \fo x A \imp \ex x (A \imp B) \imp \ex x B
4 mp_hswap_thm
A \imp (A \imp B) \imp B
5 4 imp_intro_fo
\fo x A \imp \fo x ((A \imp B) \imp B)
6 3, 5 ax_mp
(\fo x ((A \imp B) \imp B) \imp \ex x (A \imp B) \imp \ex x B) \imp \fo x A \imp \ex x (A \imp B) \imp \ex x B
7 fo_imp_insto_ex
\fo x ((A \imp B) \imp B) \imp \ex x (A \imp B) \imp \ex x B
8 6, 7 ax_mp
\fo x A \imp \ex x (A \imp B) \imp \ex x B
9 2, 8 ax_mp
\ex x (A \imp B) \imp \fo x A \imp \ex x B
10 1, 9 ax_mp
((\fo x A \imp \ex x B) \imp \ex x (A \imp B)) \imp (\ex x (A \imp B) \iff \fo x A \imp \ex x B)
11 neg_imp_with_imp_mergel_imp
(\neg \fo x A \imp \ex x (A \imp B)) \imp (\ex x B \imp \ex x (A \imp B)) \imp (\fo x A \imp \ex x B) \imp \ex x (A \imp B)
12 iff_imp_tran_imp
(\neg \fo x A \iff \ex x \neg A) \imp (\ex x \neg A \imp \ex x (A \imp B)) \imp \neg \fo x A \imp \ex x (A \imp B)
13 iff_symm
(\ex x \neg A \iff \neg \fo x A) \imp (\neg \fo x A \iff \ex x \neg A)
14 exneg_eqv_negfo
\ex x \neg A \iff \neg \fo x A
15 13, 14 ax_mp
\neg \fo x A \iff \ex x \neg A
16 12, 15 ax_mp
(\ex x \neg A \imp \ex x (A \imp B)) \imp \neg \fo x A \imp \ex x (A \imp B)
17 neg_elimintror_imp
\neg A \imp A \imp B
18 17 imp_intro_ex
\ex x \neg A \imp \ex x (A \imp B)
19 16, 18 ax_mp
\neg \fo x A \imp \ex x (A \imp B)
20 11, 19 ax_mp
(\ex x B \imp \ex x (A \imp B)) \imp (\fo x A \imp \ex x B) \imp \ex x (A \imp B)
21 introl_imp
B \imp A \imp B
22 21 imp_intro_ex
\ex x B \imp \ex x (A \imp B)
23 20, 22 ax_mp
(\fo x A \imp \ex x B) \imp \ex x (A \imp B)
24 10, 23 ax_mp
\ex x (A \imp B) \iff \fo x A \imp \ex x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4)