\neg\imp与\imp左合并\imp
theorem neg_imp_with_imp_mergel_imp (A B C: wff): $ (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | ((((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C) \imp ((B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp B) \imp C) \imp
((((B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp B) \imp C) \imp
((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp
(\neg A \imp C) \imp
(B \imp C) \imp
(A \imp B) \imp
C) \imp
(((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C) \imp
((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp
(\neg A \imp C) \imp
(B \imp C) \imp
(A \imp B) \imp
C |
|
| 2 | imp_introl_imp | (((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C) \imp ((B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp B) \imp C |
|
| 3 | 1, 2 | ax_mp | ((((B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp B) \imp C) \imp
((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp
(\neg A \imp C) \imp
(B \imp C) \imp
(A \imp B) \imp
C) \imp
(((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C) \imp
((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp
(\neg A \imp C) \imp
(B \imp C) \imp
(A \imp B) \imp
C |
| 4 | imp_introl_imp | (((B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp B) \imp C) \imp ((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C |
|
| 5 | 3, 4 | ax_mp | (((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C) \imp ((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C |
| 6 | imp_introrevr_imp | ((A \imp B) \imp \neg \neg A \imp B) \imp ((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C |
|
| 7 | imp_introrevr_imp | (\neg \neg A \imp A) \imp (A \imp B) \imp \neg \neg A \imp B |
|
| 8 | negneg_elim | \neg \neg A \imp A |
|
| 9 | 7, 8 | ax_mp | (A \imp B) \imp \neg \neg A \imp B |
| 10 | 6, 9 | ax_mp | ((\neg \neg A \imp B) \imp C) \imp (A \imp B) \imp C |
| 11 | 5, 10 | ax_mp | ((\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C) \imp (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C |
| 12 | imp_mergel_neg_imp | (\neg A \imp C) \imp (B \imp C) \imp (\neg \neg A \imp B) \imp C |
|
| 13 | 11, 12 | ax_mp | (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C |