\ex引入
theorem ex_intro {x: set} (A: wff x): $ A \imp \ex x A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo_imp_inslsto_ex_absrs | \fo y (y = x \imp A \imp \ex x A) \imp \ex y y = x \imp A \imp \ex x A |
|
| 2 | imp_tran | (y = x \imp x = y) \imp (x = y \imp A \imp \ex x A) \imp y = x \imp A \imp \ex x A |
|
| 3 | eqs_sym | y = x \imp x = y |
|
| 4 | 2, 3 | ax_mp | (x = y \imp A \imp \ex x A) \imp y = x \imp A \imp \ex x A |
| 5 | imp_tran | ((\fo x (x = y \imp A) \imp \ex x A) \imp (A \imp \fo x (x = y \imp A)) \imp A \imp \ex x A) \imp (((A \imp \fo x (x = y \imp A)) \imp A \imp \ex x A) \imp (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A) \imp (\fo x (x = y \imp A) \imp \ex x A) \imp (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A |
|
| 6 | imp_introl_imp | (\fo x (x = y \imp A) \imp \ex x A) \imp (A \imp \fo x (x = y \imp A)) \imp A \imp \ex x A |
|
| 7 | 5, 6 | ax_mp | (((A \imp \fo x (x = y \imp A)) \imp A \imp \ex x A) \imp (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A) \imp (\fo x (x = y \imp A) \imp \ex x A) \imp (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A |
| 8 | imp_introl_imp | ((A \imp \fo x (x = y \imp A)) \imp A \imp \ex x A) \imp (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A |
|
| 9 | 7, 8 | ax_mp | (\fo x (x = y \imp A) \imp \ex x A) \imp (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A |
| 10 | imp_imp_elimrsl | (\fo x (x = y \imp A) \imp \ex x x = y \imp \ex x A) \imp \ex x x = y \imp \fo x (x = y \imp A) \imp \ex x A |
|
| 11 | fo_imp_insto_ex | \fo x (x = y \imp A) \imp \ex x x = y \imp \ex x A |
|
| 12 | 10, 11 | ax_mp | \ex x x = y \imp \fo x (x = y \imp A) \imp \ex x A |
| 13 | existene | \ex x x = y |
|
| 14 | 12, 13 | ax_mp | \fo x (x = y \imp A) \imp \ex x A |
| 15 | 9, 14 | ax_mp | (x = y \imp A \imp \fo x (x = y \imp A)) \imp x = y \imp A \imp \ex x A |
| 16 | substitution | x = y \imp A \imp \fo x (x = y \imp A) |
|
| 17 | 15, 16 | ax_mp | x = y \imp A \imp \ex x A |
| 18 | 4, 17 | ax_mp | y = x \imp A \imp \ex x A |
| 19 | 18 | intro_fo | \fo y (y = x \imp A \imp \ex x A) |
| 20 | 1, 19 | ax_mp | \ex y y = x \imp A \imp \ex x A |
| 21 | existene | \ex y y = x |
|
| 22 | 20, 21 | ax_mp | A \imp \ex x A |