Theorem ex_or_distls_nfrs | index | src |

\ex\or分配左侧(右侧不出现)

theorem ex_or_distls_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ \ex x (A \or B) \iff \ex x A \or B $;
StepHypRefExpression
1 iff_tran
(\ex x (\neg A \imp B) \iff \fo x \neg A \imp B) \imp (\fo x \neg A \imp B \iff \neg \ex x A \imp B) \imp (\ex x (\neg A \imp B) \iff \neg \ex x A \imp B)
2 hyp n
\nf x B
3 2 ex_imp_distls_fo_nfrs
\ex x (\neg A \imp B) \iff \fo x \neg A \imp B
4 1, 3 ax_mp
(\fo x \neg A \imp B \iff \neg \ex x A \imp B) \imp (\ex x (\neg A \imp B) \iff \neg \ex x A \imp B)
5 iff_intror_imp
(\fo x \neg A \iff \neg \ex x A) \imp (\fo x \neg A \imp B \iff \neg \ex x A \imp B)
6 foneg_eqv_negex
\fo x \neg A \iff \neg \ex x A
7 5, 6 ax_mp
\fo x \neg A \imp B \iff \neg \ex x A \imp B
8 4, 7 ax_mp
\ex x (\neg A \imp B) \iff \neg \ex x A \imp B
9 8 conv or
\ex x (A \or B) \iff \ex x A \or B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)