Theorem ex_imp_distls_fo_nfrs | index | src |

\ex\imp分配左侧\fo(右侧无关)

theorem ex_imp_distls_fo_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ \ex x (A \imp B) \iff \fo x A \imp B $;
StepHypRefExpression
1 iff_tran
(\ex x (A \imp B) \iff \fo x A \imp \ex x B) \imp (\fo x A \imp \ex x B \iff \fo x A \imp B) \imp (\ex x (A \imp B) \iff \fo x A \imp B)
2 ex_imp_distto_fo_ex
\ex x (A \imp B) \iff \fo x A \imp \ex x B
3 1, 2 ax_mp
(\fo x A \imp \ex x B \iff \fo x A \imp B) \imp (\ex x (A \imp B) \iff \fo x A \imp B)
4 iff_introl_imp
(\ex x B \iff B) \imp (\fo x A \imp \ex x B \iff \fo x A \imp B)
5 iff_symm
(B \iff \ex x B) \imp (\ex x B \iff B)
6 hyp n
\nf x B
7 6 ex_alloc_nf
B \iff \ex x B
8 5, 7 ax_mp
\ex x B \iff B
9 4, 8 ax_mp
\fo x A \imp \ex x B \iff \fo x A \imp B
10 3, 9 ax_mp
\ex x (A \imp B) \iff \fo x A \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)