Theorem fo_and_distls_nfrs | index | src |

\fo\and分配左侧(右侧不出现)

theorem fo_and_distls_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ \fo x (A \and B) \iff \fo x A \and B $;
StepHypRefExpression
1 iff_tran
(\fo x (A \and B) \iff \fo x A \and \fo x B) \imp (\fo x A \and \fo x B \iff \fo x A \and B) \imp (\fo x (A \and B) \iff \fo x A \and B)
2 fo_and_dist
\fo x (A \and B) \iff \fo x A \and \fo x B
3 1, 2 ax_mp
(\fo x A \and \fo x B \iff \fo x A \and B) \imp (\fo x (A \and B) \iff \fo x A \and B)
4 iff_introl_and
(\fo x B \iff B) \imp (\fo x A \and \fo x B \iff \fo x A \and B)
5 iff_symm
(B \iff \fo x B) \imp (\fo x B \iff B)
6 hyp n
\nf x B
7 6 fo_alloc_nf
B \iff \fo x B
8 5, 7 ax_mp
\fo x B \iff B
9 4, 8 ax_mp
\fo x A \and \fo x B \iff \fo x A \and B
10 3, 9 ax_mp
\fo x (A \and B) \iff \fo x A \and B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)