Theorem ex_imp_distrs_nfls | index | src |

\ex\imp分配右侧(左侧无关)

theorem ex_imp_distrs_nfls {x: set} (A B: wff x):
  $ \nf x A $ >
  $ \ex x (A \imp B) \iff A \imp \ex x B $;
StepHypRefExpression
1 iff_tran
(\ex x (A \imp B) \iff \fo x A \imp \ex x B) \imp (\fo x A \imp \ex x B \iff A \imp \ex x B) \imp (\ex x (A \imp B) \iff A \imp \ex x B)
2 ex_imp_distto_fo_ex
\ex x (A \imp B) \iff \fo x A \imp \ex x B
3 1, 2 ax_mp
(\fo x A \imp \ex x B \iff A \imp \ex x B) \imp (\ex x (A \imp B) \iff A \imp \ex x B)
4 iff_intror_imp
(\fo x A \iff A) \imp (\fo x A \imp \ex x B \iff A \imp \ex x B)
5 iff_symm
(A \iff \fo x A) \imp (\fo x A \iff A)
6 hyp n
\nf x A
7 6 fo_alloc_nf
A \iff \fo x A
8 5, 7 ax_mp
\fo x A \iff A
9 4, 8 ax_mp
\fo x A \imp \ex x B \iff A \imp \ex x B
10 3, 9 ax_mp
\ex x (A \imp B) \iff A \imp \ex x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)