Theorem fo_or_insto_ex_fo | index | src |

\fo\or插入成\ex\fo

theorem fo_or_insto_ex_fo {x: set} (A B: wff x):
  $ \fo x (A \or B) \imp \ex x A \or \fo x B $;
StepHypRefExpression
1 imp_iff_tran_imp
(\fo x (A \or B) \imp \fo x B \or \ex x A) \imp (\fo x B \or \ex x A \iff \ex x A \or \fo x B) \imp \fo x (A \or B) \imp \ex x A \or \fo x B
2 iff_imp_tran_imp
(\fo x (A \or B) \iff \fo x (B \or A)) \imp (\fo x (B \or A) \imp \fo x B \or \ex x A) \imp \fo x (A \or B) \imp \fo x B \or \ex x A
3 or_comm
A \or B \iff B \or A
4 3 iff_intro_fo
\fo x (A \or B) \iff \fo x (B \or A)
5 2, 4 ax_mp
(\fo x (B \or A) \imp \fo x B \or \ex x A) \imp \fo x (A \or B) \imp \fo x B \or \ex x A
6 fo_or_insto_fo_ex
\fo x (B \or A) \imp \fo x B \or \ex x A
7 5, 6 ax_mp
\fo x (A \or B) \imp \fo x B \or \ex x A
8 1, 7 ax_mp
(\fo x B \or \ex x A \iff \ex x A \or \fo x B) \imp \fo x (A \or B) \imp \ex x A \or \fo x B
9 or_comm
\fo x B \or \ex x A \iff \ex x A \or \fo x B
10 8, 9 ax_mp
\fo x (A \or B) \imp \ex x A \or \fo x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4)