\fo\or插入成\ex
theorem fo_or_insto_fo_ex {x: set} (A B: wff x):
$ \fo x (A \or B) \imp \fo x A \or \ex x B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_iff_tran_imp | (\fo x (\neg A \imp B) \imp \ex x \neg A \imp \ex x B) \imp (\ex x \neg A \imp \ex x B \iff \neg \fo x A \imp \ex x B) \imp \fo x (\neg A \imp B) \imp \neg \fo x A \imp \ex x B |
|
| 2 | fo_imp_insto_ex | \fo x (\neg A \imp B) \imp \ex x \neg A \imp \ex x B |
|
| 3 | 1, 2 | ax_mp | (\ex x \neg A \imp \ex x B \iff \neg \fo x A \imp \ex x B) \imp \fo x (\neg A \imp B) \imp \neg \fo x A \imp \ex x B |
| 4 | iff_intror_imp | (\ex x \neg A \iff \neg \fo x A) \imp (\ex x \neg A \imp \ex x B \iff \neg \fo x A \imp \ex x B) |
|
| 5 | exneg_eqv_negfo | \ex x \neg A \iff \neg \fo x A |
|
| 6 | 4, 5 | ax_mp | \ex x \neg A \imp \ex x B \iff \neg \fo x A \imp \ex x B |
| 7 | 3, 6 | ax_mp | \fo x (\neg A \imp B) \imp \neg \fo x A \imp \ex x B |
| 8 | 7 | conv or | \fo x (A \or B) \imp \fo x A \or \ex x B |