Theorem ex_and_fo_extto_ex | index | src |

\ex\and\fo提取成\ex

theorem ex_and_fo_extto_ex {x: set} (A B: wff x):
  $ \ex x A \and \fo x B \imp \ex x (A \and B) $;
StepHypRefExpression
1 imp_iff_tran_imp
(\ex x A \and \fo x B \imp \ex x (B \and A)) \imp (\ex x (B \and A) \iff \ex x (A \and B)) \imp \ex x A \and \fo x B \imp \ex x (A \and B)
2 iff_imp_tran_imp
(\ex x A \and \fo x B \iff \fo x B \and \ex x A) \imp (\fo x B \and \ex x A \imp \ex x (B \and A)) \imp \ex x A \and \fo x B \imp \ex x (B \and A)
3 and_comm
\ex x A \and \fo x B \iff \fo x B \and \ex x A
4 2, 3 ax_mp
(\fo x B \and \ex x A \imp \ex x (B \and A)) \imp \ex x A \and \fo x B \imp \ex x (B \and A)
5 fo_and_ex_extto_ex
\fo x B \and \ex x A \imp \ex x (B \and A)
6 4, 5 ax_mp
\ex x A \and \fo x B \imp \ex x (B \and A)
7 1, 6 ax_mp
(\ex x (B \and A) \iff \ex x (A \and B)) \imp \ex x A \and \fo x B \imp \ex x (A \and B)
8 and_comm
B \and A \iff A \and B
9 8 iff_intro_ex
\ex x (B \and A) \iff \ex x (A \and B)
10 7, 9 ax_mp
\ex x A \and \fo x B \imp \ex x (A \and B)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4)