Theorem iff_boole_def | index | src |

\iff布尔等价式

theorem iff_boole_def (A B: wff):
  $ (A \iff B) \iff \neg A \or B \and (\neg B \or A) $;
StepHypRefExpression
1 iff_simintro_and
(A \imp B \iff \neg A \or B) \imp (B \imp A \iff \neg B \or A) \imp ((A \imp B) \and (B \imp A) \iff \neg A \or B \and (\neg B \or A))
2 imp_boole_def
A \imp B \iff \neg A \or B
3 1, 2 ax_mp
(B \imp A \iff \neg B \or A) \imp ((A \imp B) \and (B \imp A) \iff \neg A \or B \and (\neg B \or A))
4 imp_boole_def
B \imp A \iff \neg B \or A
5 3, 4 ax_mp
(A \imp B) \and (B \imp A) \iff \neg A \or B \and (\neg B \or A)
6 5 conv iff
(A \iff B) \iff \neg A \or B \and (\neg B \or A)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)