\neg\iff布尔等价式
theorem negiff_boole_def (A B: wff): $ \neg (A \iff B) \iff A \and \neg B \or (B \and \neg A) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_tran | (\neg (A \iff B) \iff \neg (A \imp B) \or \neg (B \imp A)) \imp (\neg (A \imp B) \or \neg (B \imp A) \iff A \and \neg B \or (B \and \neg A)) \imp (\neg (A \iff B) \iff A \and \neg B \or (B \and \neg A)) |
|
| 2 | iff_tran | (\neg \neg ((A \imp B) \imp \neg (B \imp A)) \iff (A \imp B) \imp \neg (B \imp A)) \imp ((A \imp B) \imp \neg (B \imp A) \iff \neg \neg (A \imp B) \imp \neg (B \imp A)) \imp (\neg \neg ((A \imp B) \imp \neg (B \imp A)) \iff \neg \neg (A \imp B) \imp \neg (B \imp A)) |
|
| 3 | iff_symm | ((A \imp B) \imp \neg (B \imp A) \iff \neg \neg ((A \imp B) \imp \neg (B \imp A))) \imp (\neg \neg ((A \imp B) \imp \neg (B \imp A)) \iff (A \imp B) \imp \neg (B \imp A)) |
|
| 4 | negneg_alloc | (A \imp B) \imp \neg (B \imp A) \iff \neg \neg ((A \imp B) \imp \neg (B \imp A)) |
|
| 5 | 3, 4 | ax_mp | \neg \neg ((A \imp B) \imp \neg (B \imp A)) \iff (A \imp B) \imp \neg (B \imp A) |
| 6 | 2, 5 | ax_mp | ((A \imp B) \imp \neg (B \imp A) \iff \neg \neg (A \imp B) \imp \neg (B \imp A)) \imp (\neg \neg ((A \imp B) \imp \neg (B \imp A)) \iff \neg \neg (A \imp B) \imp \neg (B \imp A)) |
| 7 | iff_intror_imp | (A \imp B \iff \neg \neg (A \imp B)) \imp ((A \imp B) \imp \neg (B \imp A) \iff \neg \neg (A \imp B) \imp \neg (B \imp A)) |
|
| 8 | negneg_alloc | A \imp B \iff \neg \neg (A \imp B) |
|
| 9 | 7, 8 | ax_mp | (A \imp B) \imp \neg (B \imp A) \iff \neg \neg (A \imp B) \imp \neg (B \imp A) |
| 10 | 6, 9 | ax_mp | \neg \neg ((A \imp B) \imp \neg (B \imp A)) \iff \neg \neg (A \imp B) \imp \neg (B \imp A) |
| 11 | 10 | conv and | \neg ((A \imp B) \and (B \imp A)) \iff \neg \neg (A \imp B) \imp \neg (B \imp A) |
| 12 | 11 | conv or | \neg ((A \imp B) \and (B \imp A)) \iff \neg (A \imp B) \or \neg (B \imp A) |
| 13 | 12 | conv iff | \neg (A \iff B) \iff \neg (A \imp B) \or \neg (B \imp A) |
| 14 | 1, 13 | ax_mp | (\neg (A \imp B) \or \neg (B \imp A) \iff A \and \neg B \or (B \and \neg A)) \imp (\neg (A \iff B) \iff A \and \neg B \or (B \and \neg A)) |
| 15 | iff_simintro_or | (\neg (A \imp B) \iff A \and \neg B) \imp (\neg (B \imp A) \iff B \and \neg A) \imp (\neg (A \imp B) \or \neg (B \imp A) \iff A \and \neg B \or (B \and \neg A)) |
|
| 16 | negimp_boole_def | \neg (A \imp B) \iff A \and \neg B |
|
| 17 | 15, 16 | ax_mp | (\neg (B \imp A) \iff B \and \neg A) \imp (\neg (A \imp B) \or \neg (B \imp A) \iff A \and \neg B \or (B \and \neg A)) |
| 18 | negimp_boole_def | \neg (B \imp A) \iff B \and \neg A |
|
| 19 | 17, 18 | ax_mp | \neg (A \imp B) \or \neg (B \imp A) \iff A \and \neg B \or (B \and \neg A) |
| 20 | 14, 19 | ax_mp | \neg (A \iff B) \iff A \and \neg B \or (B \and \neg A) |