Theorem imp_and_insl_or | index | src |

\imp\and左插入\or

theorem imp_and_insl_or (A B C: wff):
  $ (A \imp B \and C) \imp (A \imp B) \or (A \imp C) $;
StepHypRefExpression
1 imp_tran
((A \imp B \and C) \imp (A \imp B) \and (A \imp C)) \imp
  ((A \imp B) \and (A \imp C) \imp (A \imp B) \or (A \imp C)) \imp
  (A \imp B \and C) \imp
  (A \imp B) \or (A \imp C)
2 imp_and_insl
(A \imp B \and C) \imp (A \imp B) \and (A \imp C)
3 1, 2 ax_mp
((A \imp B) \and (A \imp C) \imp (A \imp B) \or (A \imp C)) \imp (A \imp B \and C) \imp (A \imp B) \or (A \imp C)
4 and_to_or
(A \imp B) \and (A \imp C) \imp (A \imp B) \or (A \imp C)
5 3, 4 ax_mp
(A \imp B \and C) \imp (A \imp B) \or (A \imp C)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)