\imp\or右插入
theorem or_imp_insr (A B C: wff): $ (A \or B \imp C) \imp (A \imp C) \or (B \imp C) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | introl_imp | C \imp B \imp C |
|
| 2 | 1 | _hyp_null_complete | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp C \imp B \imp C |
| 3 | _hyp_null_intro | ((\neg A \imp B) \imp C) \imp (\neg A \imp B) \imp C |
|
| 4 | 3 | _hyp_complete | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp (\neg A \imp B) \imp C |
| 5 | intror_neg_imp | A \imp \neg A \imp B |
|
| 6 | 5 | _hyp_null_complete | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp A \imp \neg A \imp B |
| 7 | negimp_splitl | \neg (A \imp C) \imp A |
|
| 8 | 7 | _hyp_null_complete | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp \neg (A \imp C) \imp A |
| 9 | _hyp_intro | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp \neg (A \imp C) |
|
| 10 | 8, 9 | _hyp_mp | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp A |
| 11 | 6, 10 | _hyp_mp | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp \neg A \imp B |
| 12 | 4, 11 | _hyp_mp | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp C |
| 13 | 2, 12 | _hyp_mp | ((\neg A \imp B) \imp C) \and \neg (A \imp C) \imp B \imp C |
| 14 | 13 | _hyp_rm | ((\neg A \imp B) \imp C) \imp \neg (A \imp C) \imp B \imp C |
| 15 | 14 | conv or | (A \or B \imp C) \imp (A \imp C) \or (B \imp C) |