\imp右聚集\and
theorem imp_collectr_and (A B C: wff): $ (A \imp B) \imp (A \imp C) \imp A \imp B \and C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | and_imp_break_nested | ((A \imp B) \and (A \imp C) \imp A \imp B \and C) \imp (A \imp B) \imp (A \imp C) \imp A \imp B \and C |
|
| 2 | imp_and_extl | (A \imp B) \and (A \imp C) \imp A \imp B \and C |
|
| 3 | 1, 2 | ax_mp | (A \imp B) \imp (A \imp C) \imp A \imp B \and C |