Theorem imp_collectr_and | index | src |

\imp右聚集\and

theorem imp_collectr_and (A B C: wff):
  $ (A \imp B) \imp (A \imp C) \imp A \imp B \and C $;
StepHypRefExpression
1 and_imp_break_nested
((A \imp B) \and (A \imp C) \imp A \imp B \and C) \imp (A \imp B) \imp (A \imp C) \imp A \imp B \and C
2 imp_and_extl
(A \imp B) \and (A \imp C) \imp A \imp B \and C
3 1, 2 ax_mp
(A \imp B) \imp (A \imp C) \imp A \imp B \and C

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)