\imp左提取
theorem imp_imp_extl (A B C: wff): $ ((A \imp B) \imp A \imp C) \imp A \imp B \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | (((A \imp B) \imp A \imp C) \imp B \imp A \imp C) \imp ((B \imp A \imp C) \imp A \imp B \imp C) \imp ((A \imp B) \imp A \imp C) \imp A \imp B \imp C |
|
| 2 | imp_tran | (B \imp A \imp B) \imp ((A \imp B) \imp A \imp C) \imp B \imp A \imp C |
|
| 3 | introl_imp | B \imp A \imp B |
|
| 4 | 2, 3 | ax_mp | ((A \imp B) \imp A \imp C) \imp B \imp A \imp C |
| 5 | 1, 4 | ax_mp | ((B \imp A \imp C) \imp A \imp B \imp C) \imp ((A \imp B) \imp A \imp C) \imp A \imp B \imp C |
| 6 | imp_imp_swapl | (B \imp A \imp C) \imp A \imp B \imp C |
|
| 7 | 5, 6 | ax_mp | ((A \imp B) \imp A \imp C) \imp A \imp B \imp C |