\imp替换第二位
theorem imp_repsecond (A B C D: wff): $ (A \imp B \imp C) \imp (D \imp B) \imp A \imp D \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_imp_swapl | ((D \imp B) \imp (A \imp B \imp C) \imp A \imp D \imp C) \imp (A \imp B \imp C) \imp (D \imp B) \imp A \imp D \imp C |
|
| 2 | imp_tran | ((D \imp B) \imp (B \imp C) \imp D \imp C) \imp (((B \imp C) \imp D \imp C) \imp (A \imp B \imp C) \imp A \imp D \imp C) \imp (D \imp B) \imp (A \imp B \imp C) \imp A \imp D \imp C |
|
| 3 | imp_introrevr_imp | (D \imp B) \imp (B \imp C) \imp D \imp C |
|
| 4 | 2, 3 | ax_mp | (((B \imp C) \imp D \imp C) \imp (A \imp B \imp C) \imp A \imp D \imp C) \imp (D \imp B) \imp (A \imp B \imp C) \imp A \imp D \imp C |
| 5 | imp_introl_imp | ((B \imp C) \imp D \imp C) \imp (A \imp B \imp C) \imp A \imp D \imp C |
|
| 6 | 4, 5 | ax_mp | (D \imp B) \imp (A \imp B \imp C) \imp A \imp D \imp C |
| 7 | 1, 6 | ax_mp | (A \imp B \imp C) \imp (D \imp B) \imp A \imp D \imp C |