\imp\or左插入
theorem imp_or_insl (A B C: wff): $ (A \imp B \or C) \imp (A \imp B) \or (A \imp C) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_imp_swapl | (A \imp \neg B \imp C) \imp \neg B \imp A \imp C |
|
| 2 | 1 | _hyp_null_complete | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp (A \imp \neg B \imp C) \imp \neg B \imp A \imp C |
| 3 | _hyp_null_intro | (A \imp \neg B \imp C) \imp A \imp \neg B \imp C |
|
| 4 | 3 | _hyp_complete | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp A \imp \neg B \imp C |
| 5 | 2, 4 | _hyp_mp | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp \neg B \imp A \imp C |
| 6 | negimp_splitr_neg | \neg (A \imp B) \imp \neg B |
|
| 7 | 6 | _hyp_null_complete | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp \neg (A \imp B) \imp \neg B |
| 8 | _hyp_intro | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp \neg (A \imp B) |
|
| 9 | 7, 8 | _hyp_mp | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp \neg B |
| 10 | 5, 9 | _hyp_mp | (A \imp \neg B \imp C) \and \neg (A \imp B) \imp A \imp C |
| 11 | 10 | _hyp_rm | (A \imp \neg B \imp C) \imp \neg (A \imp B) \imp A \imp C |
| 12 | 11 | conv or | (A \imp \neg B \imp C) \imp (A \imp B) \or (A \imp C) |
| 13 | 12 | conv or | (A \imp B \or C) \imp (A \imp B) \or (A \imp C) |