\imp继位
theorem imp_replast (A B C D: wff): $ (A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_imp_swapl | ((C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D) \imp (A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D |
|
| 2 | imp_tran | ((C \imp D) \imp (B \imp C) \imp B \imp D) \imp (((B \imp C) \imp B \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D) \imp (C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D |
|
| 3 | imp_introl_imp | (C \imp D) \imp (B \imp C) \imp B \imp D |
|
| 4 | 2, 3 | ax_mp | (((B \imp C) \imp B \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D) \imp (C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D |
| 5 | imp_introl_imp | ((B \imp C) \imp B \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D |
|
| 6 | 4, 5 | ax_mp | (C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D |
| 7 | 1, 6 | ax_mp | (A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D |