Theorem imp_replast | index | src |

\imp继位

theorem imp_replast (A B C D: wff):
  $ (A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D $;
StepHypRefExpression
1 imp_imp_swapl
((C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D) \imp (A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D
2 imp_tran
((C \imp D) \imp (B \imp C) \imp B \imp D) \imp
  (((B \imp C) \imp B \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D) \imp
  (C \imp D) \imp
  (A \imp B \imp C) \imp
  A \imp
  B \imp
  D
3 imp_introl_imp
(C \imp D) \imp (B \imp C) \imp B \imp D
4 2, 3 ax_mp
(((B \imp C) \imp B \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D) \imp (C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D
5 imp_introl_imp
((B \imp C) \imp B \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D
6 4, 5 ax_mp
(C \imp D) \imp (A \imp B \imp C) \imp A \imp B \imp D
7 1, 6 ax_mp
(A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D

Axiom use

Logic (ax_mp, ax_1, ax_2)