Theorem imp2_elimcontradl | index | src |

\imp左矛盾消去

theorem imp2_elimcontradl (A B: wff):
  $ (A \imp B) \imp (\neg A \imp B) \imp B $;
StepHypRefExpression
1 imp_imp_swapl
((\neg A \imp B) \imp (A \imp B) \imp B) \imp (A \imp B) \imp (\neg A \imp B) \imp B
2 imp_tran
((((A \imp A) \imp B) \imp B) \imp ((A \imp B) \imp (A \imp A) \imp B) \imp (A \imp B) \imp B) \imp
  ((((A \imp B) \imp (A \imp A) \imp B) \imp (A \imp B) \imp B) \imp
    ((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp
    (\neg A \imp B) \imp
    (A \imp B) \imp
    B) \imp
  (((A \imp A) \imp B) \imp B) \imp
  ((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp
  (\neg A \imp B) \imp
  (A \imp B) \imp
  B
3 imp_introl_imp
(((A \imp A) \imp B) \imp B) \imp ((A \imp B) \imp (A \imp A) \imp B) \imp (A \imp B) \imp B
4 2, 3 ax_mp
((((A \imp B) \imp (A \imp A) \imp B) \imp (A \imp B) \imp B) \imp
    ((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp
    (\neg A \imp B) \imp
    (A \imp B) \imp
    B) \imp
  (((A \imp A) \imp B) \imp B) \imp
  ((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp
  (\neg A \imp B) \imp
  (A \imp B) \imp
  B
5 imp_introl_imp
(((A \imp B) \imp (A \imp A) \imp B) \imp (A \imp B) \imp B) \imp
  ((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp
  (\neg A \imp B) \imp
  (A \imp B) \imp
  B
6 4, 5 ax_mp
(((A \imp A) \imp B) \imp B) \imp ((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp (\neg A \imp B) \imp (A \imp B) \imp B
7 mp_with_ant_thm
(((A \imp A) \imp B) \imp (A \imp A) \imp B) \imp (((A \imp A) \imp B) \imp A \imp A) \imp ((A \imp A) \imp B) \imp B
8 mp_thm
((A \imp A) \imp B) \imp (A \imp A) \imp B
9 7, 8 ax_mp
(((A \imp A) \imp B) \imp A \imp A) \imp ((A \imp A) \imp B) \imp B
10 introl_imp
(A \imp A) \imp ((A \imp A) \imp B) \imp A \imp A
11 imp_refl
A \imp A
12 10, 11 ax_mp
((A \imp A) \imp B) \imp A \imp A
13 9, 12 ax_mp
((A \imp A) \imp B) \imp B
14 6, 13 ax_mp
((\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B) \imp (\neg A \imp B) \imp (A \imp B) \imp B
15 neg_imp_with_imp_mergel_imp
(\neg A \imp B) \imp (A \imp B) \imp (A \imp A) \imp B
16 14, 15 ax_mp
(\neg A \imp B) \imp (A \imp B) \imp B
17 1, 16 ax_mp
(A \imp B) \imp (\neg A \imp B) \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)