Theorem or_and_distr | index | src |

\or\and右分配

theorem or_and_distr (A B C: wff):
  $ A \or B \and C \iff A \and C \or (B \and C) $;
StepHypRefExpression
1 iff_tran
(A \or B \and C \iff C \and A \or (C \and B)) \imp (C \and A \or (C \and B) \iff A \and C \or (B \and C)) \imp (A \or B \and C \iff A \and C \or (B \and C))
2 iff_tran
(A \or B \and C \iff C \and (A \or B)) \imp (C \and (A \or B) \iff C \and A \or (C \and B)) \imp (A \or B \and C \iff C \and A \or (C \and B))
3 and_comm
A \or B \and C \iff C \and (A \or B)
4 2, 3 ax_mp
(C \and (A \or B) \iff C \and A \or (C \and B)) \imp (A \or B \and C \iff C \and A \or (C \and B))
5 and_or_distl
C \and (A \or B) \iff C \and A \or (C \and B)
6 4, 5 ax_mp
A \or B \and C \iff C \and A \or (C \and B)
7 1, 6 ax_mp
(C \and A \or (C \and B) \iff A \and C \or (B \and C)) \imp (A \or B \and C \iff A \and C \or (B \and C))
8 iff_simintro_or
(C \and A \iff A \and C) \imp (C \and B \iff B \and C) \imp (C \and A \or (C \and B) \iff A \and C \or (B \and C))
9 and_comm
C \and A \iff A \and C
10 8, 9 ax_mp
(C \and B \iff B \and C) \imp (C \and A \or (C \and B) \iff A \and C \or (B \and C))
11 and_comm
C \and B \iff B \and C
12 10, 11 ax_mp
C \and A \or (C \and B) \iff A \and C \or (B \and C)
13 7, 12 ax_mp
A \or B \and C \iff A \and C \or (B \and C)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)